
 

The University of Texas at Austin 

Dept. of Electrical and Computer Engineering 

Final Exam Solutions 2.0 

 

Date: December 10, 2021     Course: EE 313 Evans 

 

 

 

 

Name:           Things,          Stranger    

Last,      First   

 

 

 

 

 This in-person exam is scheduled to last three hours. 

 Open books, open notes, and open class materials, including homework assignments and 

solution sets and previous midterm exams and solutions. 

 Calculators are allowed. 

 You may use any standalone computer system, i.e. one that is not connected to a network.  

 Please disable all wireless connections on your calculator(s) and computer system(s). 

 Please mute all computer systems. 

 Please turn off all phones. 

 No headphones are allowed. 

 All work should be performed on the midterm exam.  If more space is needed, then use 

the backs of the pages. 

 Fully justify your answers.  If you decide to quote text from a source, please give the 

quote, page number and source citation. 

 

 

 

Prob Point 

Value 

Average 

score 

Standard 

Deviation 

Topic  

1 16 14.38 1.83 Heart and Soul of Discrete-Time Signals & Systems Jim Hopper 

2 12 8.75 2.81 Continuous-Time Fourier Series Dustin  

3 12 9.56 1.64 Discrete-Time Audio Signal Processing Max 

4 12 10.56 1.29 Continuous-Time Communication System Mike Wheeler 

5 12 7.91 2.02 Discrete-Time Filter Analysis Joyce Byers 

6 12 10.03 1.98 Continuous-Time Signal Acrobatics Will 

7 12 9.56 2.37 Discrete-Time Equalization Lucas 

8 12 7.75 3.82 Continuous-Time Frequency-Domain Analysis Eleven 

Total 100 78.50 11.41   

Note: 32 students took the final exam.  The median score was 81.  A 4-point offset was added to each 

student’s score which brought the median score to 85 and the average score to 82.50. 



Problem 1. Heart and Soul for Discrete-Time Signals and Linear Systems.  16 points. 

(a) LTI Systems. Consider a discrete-time linear time-invariant system with input signal 𝑥[𝑛], impulse 

response ℎ[𝑛] and output signal 𝑦[𝑛].   9 points. 

i. Give the relationship for 𝑦[𝑛] to 𝑥[𝑛] and ℎ[𝑛] involving only operations in the discrete-time 

domain. 

ii. Give the relationship for 𝑌𝑓𝑟𝑒𝑞(𝜔̂) to 𝑋𝑓𝑟𝑒𝑞(𝜔̂) and 𝐻𝑓𝑟𝑒𝑞(𝜔̂) using only operations in the 

discrete-time Fourier (frequency) domain. 

iii. Give the relationship for 𝑌(𝑧) to 𝑋(𝑧) and 𝐻(𝑧) using only operations in the z-domain. 

 

 

 

 

𝒚[𝒏] = 𝒉[𝒏] ∗ 𝒙[𝒏]  -OR- 𝒚[𝒏] = 𝒙[𝒏] ∗ 𝒉[𝒏] 

𝒀𝒇𝒓𝒆𝒒(𝝎̂) = 𝑯𝒇𝒓𝒆𝒒(𝝎̂) 𝑿𝒇𝒓𝒆𝒒(𝝎̂)  -OR-  𝒀𝒇𝒓𝒆𝒒(𝝎̂) = 𝑿𝒇𝒓𝒆𝒒(𝝎̂) 𝑯𝒇𝒓𝒆𝒒(𝝎̂) 

𝒀(𝒛) = 𝑯(𝒛) 𝑿(𝒛)  -OR-  𝒀(𝒛) = 𝑿(𝒛) 𝑯(𝒛)   where  𝐑𝐎𝐂{𝒀(𝒛)} =  𝐑𝐎𝐂{𝑿(𝒛)} ∩ 𝐑𝐎𝐂{𝑯(𝒛)} 

(b) Sampling in the time domain.  7 points. 

Consider the continuous-time sinusoidal signal 𝑣(𝑡) at fixed 

frequency 𝑓0 in Hz defined as 

𝑣(𝑡) = cos(2𝜋𝑓0𝑡) 

observed for −∞ < 𝑡 < ∞ and sampled at sampling rate 𝑓𝑠  
to produce signal 𝑣[𝑛] as shown on the right. 

i. Give a formula for 𝑣[𝑛] observed for −∞ < 𝑛 < ∞.  3 points. 

𝒗[𝒏] = 𝒗(𝒕)|𝒕=𝒏𝑻𝒔 = 𝐜𝐨𝐬(𝟐𝝅𝒇𝟎(𝒏𝑻𝒔)) 

𝒗[𝒏] = 𝐜𝐨𝐬(𝟐𝝅𝒇𝟎𝑻𝒔𝒏) = 𝐜𝐨𝐬 (𝟐𝝅
𝒇𝟎
𝒇𝒔
𝒏) = 𝐜𝐨𝐬(𝝎̂𝟎𝒏) 

ii. Give a formula for the discrete-time frequency 𝜔̂0 for 𝑣[𝑛] in 

rad/sample in terms of the continuous-time frequency 𝑓0.  2 points. 

𝝎̂𝟎 = 𝟐𝝅
𝒇𝟎
𝒇𝒔

 

iii. What continuous-time frequencies 𝑓 are captured by sampling at sampling rate 𝑓𝑠  without 

aliasing?  2 points. 

Sampling Theorem says “Continuous-time signal x(t) with frequencies no higher than 

fmax can be reconstructed from its samples x(n Ts) if samples taken at rate fs > 2 fmax” 

(Lecture Slide 16-6). 

So, fmax < (½) fs which means −
𝟏

𝟐
𝒇𝒔 < 𝒇 <

𝟏

𝟐
𝒇𝒔 when including negative frequencies. 

SPFirst Sec. 6.1 pp. 130-132 

Fall 2018 Final Exam Prob 1 

SPFirst Sec. 7.5 p. 171 eq. (7.19) 

SPFirst Sec. 5-6.1 pp. 118-210 

Lecture slides 9-4 to 9-11 freq. 

Lecture slide 8-8 time domain 

Lecture slide 10-7 z-domain 

Fall 2018 & 2021 Midterm 1.1(a) 

Fall 2018 & 2021 Midterm 1.1(b) 

SPFirst Sec. 4-1.1 & lec. slide 5-5 

SPFirst Sec. 4-1.1 & lec. slide 5-5 

Homework 3.2 & 4.1 

Homework 3.2 & 4.1 



Problem 2. Continuous-Time Fourier Series.  12 points. 

A continuous-time impulse train can model the periodic instantaneous closing and 

opening of a switch in sampling when viewing the sampling output in continuous time. 

For a sampling time of 𝑇𝑠, the impulse train can be expressed as 

𝑝(𝑡) = ∑ 𝛿(𝑡 − 𝑛 𝑇𝑠)

∞

𝑛=−∞

 

and its plot is 

 

 

 

 

 

where (1) indicates that the area under each Dirac delta is 1. 

(a) What is the fundamental period 𝑇0 of 𝑝(𝑡)?  2 points. 

A Dirac delta occurs every 𝑻𝒔 seconds. 

Fundamental period is  𝑻𝟎 = 𝑻𝒔 

(b) Compute the Fourier series coefficients using the Fourier synthesis formula.  6 points. 

𝑝(𝑡) = ∑ 𝑎𝑘  𝑒
𝑗 2 𝜋 (𝑘 𝑓0) 𝑡

∞

𝑘=−∞

 

where 

𝑎0 =
1

𝑇0
∫ 𝑝(𝑡)𝑑𝑡

1
2
𝑇0

−
1
2
𝑇0

 

𝑎𝑘 =
1

𝑇0
∫ 𝑝(𝑡) 𝑒−𝑗 2 𝜋 (𝑘 𝑓0) 𝑡 𝑑𝑡

1
2
𝑇0

−
1
2
𝑇0

 

The limits of integration are from 

 −
1

2
𝑇0 to 

1

2
𝑇0 to make sure to include 

the Dirac delta at the origin inside the 

limits. 

(c) Plot the spectrum of the Fourier series.  2 points. 

All Fourier series coefficients have the same value. 

 

(d) Describe the spectrum of the Fourier series coefficients.  2 points. 

The spectrum is constant for all harmonic frequencies 𝒌𝒇𝒔.  Looks like an impulse train.  

  

SPFirst Sec. 11-4.6 Ex. 11-4 p. 321 

 

Lecture Slides 2-3 & 3-4 

In-Lecture Assignment #4 

In the fundamental period −
𝟏

𝟐
𝑻𝒔 < 𝒕 ≤

𝟏

𝟐
𝑻𝒔 , there is one 

Dirac delta at 𝒕 = 𝟎.  Fourier series coefficient 𝒂𝟎 is the 

average value of the signal over the fundamental period: 

𝒂𝟎 =
𝟏

𝑻𝒔
∫ 𝒑(𝒕) 𝒅𝒕

𝟏
𝟐
𝑻𝒔

−
𝟏
𝟐
𝑻𝒔

=
𝟏

𝑻𝒔
∫ 𝜹(𝒕) 𝒅𝒕 =

𝟏

𝑻𝒔

𝟏
𝟐
𝑻𝒔

−
𝟏
𝟐
𝑻𝒔

 

We’re using the fact that the Dirac delta has unit area. 

We can use the sifting property for the Dirac delta for 𝒂𝒌: 

𝒂𝒌 =
𝟏

𝑻𝒔
∫ 𝜹(𝒕) 𝒆−𝒋 𝟐 𝝅 (𝒌 𝒇𝟎) 𝒕 𝒅𝒕 =

𝟏

𝑻𝒔

𝟏
𝟐
𝑻𝒔

−
𝟏
𝟐
𝑻𝒔

 

The sifting property is 

∫ 𝒈(𝒕) 𝜹(𝒕) 𝒅𝒕 =  𝒈(𝟎)
∞

−∞

 

Fall 2017 Final Exam Prob 1 

Fall 2018 Midterm 1.3 

Lecture Slides 3-7 to 3-14 

Fall 2021 Midterm 1.2 & 1.3 

SPFirst Sec. 3-3 to 3-6 

Mini-Project #1 

SPFirst Sec. 3-3 



Problem 3.  Discrete-Time Audio Signal Processing. 12 points. 

(a) Consider generating an A major chord by playing the notes A, C# and E at the same time where the 

note frequencies are fA = 440 Hz, fC# = 550 Hz and fE = 660 Hz, respectively: 

𝑥(𝑡) = cos(2 𝜋 𝑓𝐴 𝑡) + cos(2 𝜋 𝑓𝐶# 𝑡) + cos(2 𝜋 𝑓𝐸 𝑡) 

1. Determine the corresponding discrete-time frequencies 𝜔̂𝐴, 𝜔̂𝐶# and 𝜔̂𝐸  for a sampling rate of 

fs = 44100 Hz.  3 points.  Discrete-time frequencies are in units of rad/sample. 

𝝎̂𝑨 = 𝟐𝝅
𝒇𝑨
𝒇𝒔
= 𝟐𝝅

𝟒𝟒𝟎 𝐇𝐳

𝟒𝟒𝟏𝟎𝟎 𝐇𝐳
= 𝟐𝝅

𝟐𝟐

𝟐𝟐𝟎𝟓
 

𝝎̂𝑪# = 𝟐𝝅
𝒇𝑨
𝒇𝒔
= 𝟐𝝅

𝟓𝟓𝟎 𝐇𝐳

𝟒𝟒𝟏𝟎𝟎 𝐇𝐳
= 𝟐𝝅

𝟏𝟏

𝟖𝟖𝟐
 

𝝎̂𝑬 = 𝟐𝝅
𝒇𝑨
𝒇𝒔
= 𝟐𝝅

𝟔𝟔𝟎 𝐇𝐳

𝟒𝟒𝟏𝟎𝟎 𝐇𝐳
= 𝟐𝝅

𝟏𝟏

𝟕𝟑𝟓
 

 

2. What is the smallest discrete-time period in samples for x[n]? 3 points. 

For a discrete-time cosine signal with discrete-time frequency in the form of 𝝎𝟎 = 𝟐𝝅
𝑵

𝑳
 

where 𝑵 and 𝑳 are relatively prime integers, the smallest discrete-time period is 𝑳 samples. 

Discrete-time periods for the above discrete-time frequencies are 2205, 882 and 735 samples. 

The smallest discrete-time period for 𝒙[𝒏] is the lcm(2205, 882, 735) = 4410 samples. 

(b) A discrete-time signal with sampling rate of fs of 8000 Hz has the 

following “UX” spectrogram.  The spectrogram was computed using 

1000 samples per block and an overlap of 900 samples. 

1. Describe the frequency content vs. time. 3 points. 

By using the intensity scale shown to the right of 

the spectrogram plot:  

t = 0.5s : all frequencies present  

0.5s < t < 1.5s : Low frequencies 0 to 0.1 kHz 

continuously present (in white) plus six less 

intense short bursts of frequencies 0 to 1 kHz 

equally spaced in time (short rect. pulses)  

t = 1.5s : all frequencies present 

2.5s < t < 3.5s : chirp increasing from 0 to 1⁄2fs 

plus a chirp decreasing from 1⁄2fs to 0 

2. What would the signal sound like when played as audio signal?  3 points. 

0.5s < t < 1.5s : Bass tones 20-100 Hz plus lower intensity 0-1 kHz freq. repeated 6 times. 

Clicking sounds at 0.5s and 1.5s 

2.5s < t < 3.5s : Note increasing 0 to 4 kHz, and note decreasing 4 to 0 kHz, with time.  

 

SPFirst Sec. 4-1.1 

 

Handout D Discrete-Time Periodicity 

Lecture slides 5-5 to 5-6 and 9-12 to 9-13 

 

Fall 2021 Midterm 1.1 

Mini-Project #1 Homework 2.3 

Lecture 4 Slides SPFirst Sec. 3-7 & 3-8 

In-Lecture Assignments 1, 4 & 5 



Problem 3(b) Supplemental information not expected for students to have provided in their answers  

Matlab code to generate the spectrogram. 

fs = 8000; 

Ts = 1 / fs; 

tmax = 4; 

utSignal = zeros(1, tmax*fs); 

t1sec = 0 : Ts : (1 - Ts); 

%% Spectrogram parameters 

Nfft = 1000; 

Noverlap = 900; 

%% Generate low frequency groups 

f0 = fs / Nfft; 

lowfcosines = zeros(1, length(t1sec)); 

for n = 1 : 10 

  f1 = n*f0; 

  lowfcosines = lowfcosines + cos(2*pi*f1*t1sec); 

end 

%% Create chirp signals 

fstart = 0; 

fend = fs/2; 

fstep = fend - fstart; 

phi = pi*fstep*(t1sec.^2); 

upchirp = cos(2*pi*fstart*t1sec + phi); 

downchirp = cos(2*pi*fend*t1sec - phi); 

%% Draw U into spectrogram 

utSignal(0.5*fs+1:1.5*fs) = lowfcosines; 

%% Draw X into spectrogram 

utSignal(2.5*fs+1:3.5*fs)= upchirp + downchirp; 

%% Plot the spectrogram 

spectrogram(utSignal, hamming(Nfft), Noverlap, Nfft, fs, 'yaxis'); 

colormap bone; 

Matlab code to play the signal as an audio signal.  Playing the sound over laptop speakers won’t 

likely play sub-woofer frequencies (20-200 Hz) which is the bulk of the signal from 0.5s to 1.5s.  

You might try to use headphones, or find a system with a sub-woofer. 

soundsc(utSignal, fs); 

  



Problem 4. Continuous-Time Communication System.  12 points.  

We will transmit one bit over a communication channel and analyze the result at the receiver.  

 A bit of value ‘1’ will be transmitted as 𝑥1(𝑡), a rectangular pulse of positive amplitude 𝐴. 

 A bit of value ‘0’ will be transmitted as 𝑥0(𝑡), a rectangular pulse of negative amplitude -𝐴. 

We will model the communication channel as an LTI system, as given below. 

 
(a) Plot 𝑦1(𝑡) = ℎ(𝑡) ∗ 𝑥1(𝑡).  Label the important points on the vertical and 

horizontal axes in terms of 𝐴, 𝑇𝑏, and 𝑇ℎ.  Assume 𝑇ℎ < 𝑇𝑏. 4 points. 

 

 

 

(b) Plot 𝑦0(𝑡) = ℎ(𝑡) ∗ 𝑥0(𝑡).  Label the important points on the vertical and 

horizontal axes in terms of 𝐴, 𝑇𝑏, and 𝑇ℎ.  Assume 𝑇ℎ < 𝑇𝑏. 4 points. 

We can use the convolution property in which scaling one of the signals 

being convolved causes the same scaling in the convolution result. 

That is, we can reuse the result from (a) by multiplying 𝒙𝟏(𝒕) by -1. 

 

 

(c) Determine how the receiver could reliably determine which bit had been 

transmitted by processing 𝑦(𝑡). 4 points. 

Approach #1: Sample the received signal 𝒚(𝒕) at 𝒕 =  𝑻𝒃 and compare the amplitude value 

against 0 to decide what bit was most likely to have been sent. 

Approach #2: Apply a matched filter (from problem 6 below) to 𝒚(𝒕) and sample the result at 

𝑻𝒃 seconds and compare the amplitude value against 0. 

Approach #3: Apply an equalizer to compensate for the distortion in the communication 

channel modeled by 𝒉(𝒕) and then apply approach #1 or #2. 

Fall 2017 Final Exam Prob. 3 

Handout E Convolving Rect Pulses 

Homework 7.4 

Summer 2016 Final Exam Prob. 7(b) 

Mini-Project #2 

In-Lecture 

Assignment 8 

Lecture Slide 12-6 Rect Pulse Lecture 13 CT Convolution SPFirst Sec. 9-7 Convolution 

Fall 2018 Midterm 2.1(a) Fall 2017 Midterm 2.2(a) 



Problem 5. Discrete-Time Filter Analysis. 12 points.  

Consider the following causal finite impulse response (FIR) linear time-invariant (LTI) filter with 

input x[n] and output y[n] described by 

𝑦[𝑛] = 𝑥[𝑛] − 𝑥[𝑛 − 2] 

for n  0. 

(a) What are the initial conditions?  What are their values?  3 points. 

Let n=0:  y[0] = x[0] – x[-2] 

Let n=1:  y[1] = x[1] – x[-1] 

Let n=2:  y[2] = x[2] – x[0]  etc. 

Initial conditions are x[-1] and x[-2] and must be zero for linearity and time-invariant 

properties to hold. 

Note that x[0] is the first input value and not an initial condition, and similarly, y[0] is the 

first output value and not an initial condition. 

(b) Derive the system transfer function 𝐻(𝑧) in the z-domain and the region of convergence. 

3 points 

Z-transform both sides of the difference equation, knowing that all initial conditions are 

zero:  Y(z) = X(z) – z -2 X(z) which means that 𝑯(𝒛) =
𝒀(𝒛)

𝑿(𝒛)
= 𝟏 − 𝒛−𝟐  for 𝒛 ≠ 𝟎. 

(c) Give a formula for the discrete-time frequency response of the FIR filter.  3 points. 

We can convert the transfer function H(z) into the discrete-time frequency domain by 

substituting z = exp(j ) because the region of convergence includes the unit circle: 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝑯(𝒛)]𝒛=𝒆𝒋𝝎 = 𝟏 − 𝒆
−𝟐𝒋𝝎 

(d) What is the frequency selectivity: lowpass, highpass, bandpass, bandstop, allpass, notch?  3 points. 

𝑯(𝒛) = 𝟏 − 𝒛−𝟐 = 
𝒛𝟐−𝟏

𝒛𝟐
=

(𝒛−𝟏)(𝒛+𝟏)

𝒛𝟐
.  

Zeros at 𝒛 = 𝟏 and 𝒛 = −𝟏.  Two poles at 𝒛 = 𝟎. 

𝑯𝒇𝒓𝒆𝒒(𝝎) =  
(𝒆𝒋𝝎 − 𝟏)(𝒆𝒋𝝎 + 𝟏)

(𝒆𝒋𝝎)(𝒆𝒋𝝎)
 

Taking the absolute value of both sides gives the magnitude response: 

|𝑯𝒇𝒓𝒆𝒒(𝝎)| =  |
(𝒆𝒋𝝎 − 𝟏)(𝒆𝒋𝝎 + 𝟏)

(𝒆𝒋𝝎)(𝒆𝒋𝝎)
| =

|𝒆𝒋𝝎 − 𝟏| |𝒆𝒋𝝎 + 𝟏|

|𝒆𝒋𝝎| |𝒆𝒋𝝎|
= |𝒆𝒋𝝎 − 𝟏|⏟      

𝒛𝒆𝒓𝒐𝒔 𝒐𝒖𝒕
𝝎=𝟎

 |𝒆𝒋𝝎 + 𝟏|⏟      
𝒛𝒆𝒓𝒐𝒔 𝒐𝒖𝒕
𝝎=𝝅

 

Zeros at 𝒛 = 𝟏 and 𝒛 = −𝟏 eliminate frequencies 

at 𝝎 = 𝟎 and 𝝎 = 𝝅, respectively.  BANDPASS. 

  w = -pi : (2*pi)/1000 : pi; 

H = 1 - exp(-j*2*w); 

plot(w, abs(H)); 

xlabel('w'); 

ylabel('|Hfreq(w)|'); 

xlim([-pi pi]); 

 

 

Fall 2021 Midterm 2.3 

SPFirst Sec. 8.2 p. 198 

Fall 2018 Final Exam Prob 4 Fall 2018 Midterm 2.3 

Summer 2016 Final Exam Probs 4 & 8 Fall 2017 Midterm 2.3 & 2.4 

Homework 6.1, 6.3 & 7.2 SPFirst Ch. 7 & 8 



Problem 6.  Continuous-Time Signal Acrobatics.  12 points. 

Matched filtering detects a pulse shape in a signal by correlating the signal with the known pulse shape.  

Applications include communication, radar, sonar, and ultrasound systems. 

The matched filter gets its name from its impulse response ℎ(𝑡) being matched to the pulse shape 𝑔(𝑡) 
according to the following formula: 

ℎ(𝑡) = 𝐶 𝑔∗(𝑇 − 𝑡) 

We form ℎ(𝑡) by flipping 𝑔(𝑡) in time 𝑡, delaying by constant delay 𝑇, conjugating the amplitude, and 

scaling by non-zero constant 𝐶.  𝑇 is often chosen to make the impulse response causal. 

For the pulse shape 𝑔(𝑡) shown on the right, 

(a) Plot 𝑔(−𝑡). 4 points. 

Flip 𝒈(𝒕) in time. 

 

 

 

 

 

 

 

 

(b) Plot 𝑔(𝑇 − 𝑡).  This should be a causal signal.  4 points. 

Delay 𝒈(−𝒕) by constant delay 𝑻. 

 

 

 

 

 

 

 

 

(c) Plot 𝐶 𝑔∗(𝑇 − 𝑡).  4 points. 

Conjugating the amplitude of 𝒈∗(𝑻 − 𝒕), which does not have any effect because the pulse 

shape is real-valued, and then scaling by non-zero constant 𝑪.  

  

Mini-Project #2 

Lecture Slide 2-3 



Problem 7. Discrete-Time Equalization.  12 points. 

When sound waves propagate through air, or when electromagnetic waves propagate through air, the 

waves are absorbed, reflected and scattered by objects in the environment. 

In the transmission of sound waves over the air in a room from an audio speaker to a microphone, we 

will model the direct path from the speaker to the microphone as having zero delay, and a one-bounce 

path from the speaker to an object and then to the microphone having delay t1. 

This single reflection is a type 

of echo. 

We model the signal 𝑦(𝑡) at the 

output of the microphone as 

𝑦(𝑡) = 𝑥(𝑡) − 𝛼 𝑥(𝑡 − 𝑡1) 

where  is a real-valued constant and 𝑡1 > 0.   

We model that system that connects 𝑥(𝑡) and 𝑦(𝑡) as linear and time-invariant (LTI). 

By adding a digital-to-analog (D/A) converter on the input the audio speaker and an analog-to-digital 

converter (A/D) on the output of the microphone, we convert the problem to discrete time: 

𝑦[𝑛] = 𝑥[𝑛] − 𝛼 𝑥[𝑛 − 1] 

We’re assuming 𝑡1 = 𝑇𝑠 , 𝛼 is real-valued, and delay through the D/A and A/D converters is zero. 

(a) Derive a formula for the impulse response ℎ[𝑛].  3 points. 

Impulse response means the system response (output) to an impulse. 

Let the input signal be 𝒙[𝒏] = 𝜹[𝒏], then the output signal is 𝒉[𝒏] = 𝜹[𝒏] −  𝜶 𝜹[𝒏 − 𝟏] 

(b) Find transfer function in the z-domain 𝐻(𝑧).  3 points. 

Take the z-transform of impulse response:  𝑯(𝒛) = 𝒁{ 𝒉[𝒏] } = 𝟏 − 𝜶 𝒛−𝟏  𝐟𝐨𝐫 𝒛 ≠ 𝟎 

(c) We add a discrete-time LTI filter at the microphone output to remove as much echo as possible.  

Design the discrete-time filter by giving its transfer function 𝐺(𝑧) in the z-domain.  The filter 

𝐺(𝑧) must be bounded-input bounded-output (BIBO) stable.  6 points. 

 Case I.  |𝛼| < 1. 𝑯(𝒛) 𝑮(𝒛) = 𝟏 𝐬𝐨 

𝑮(𝒛) =
𝟏

𝑯(𝒛)
=

𝟏

𝟏 − 𝜶 𝒛−𝟏
 

𝑮(𝒛) is BIBO stable because its pole at 𝒛 = 𝜶 is inside unit circle. 

 Case II.  |𝑎| = 1. We cannot use 𝑮(𝒛) =
𝟏

𝟏−𝜶 𝒛−𝟏
 .  It’s not BIBO 

stable because the pole at 𝒛 = 𝜶 is on the unit circle.  We move the 

pole just inside the unit circle to create notch arrangement between 

the pole at 𝒛 = 𝟎. 𝟗𝟗𝜶 and zero at 𝒛 = 𝜶. 

 Case III.  |𝛼| > 1 We cannot use 𝑮(𝒛) =
𝟏

𝟏−𝜶 𝒛−𝟏
 .  It’s not BIBO 

stable because the pole at 𝒛 = 𝜶 is outside the unit circle.  If we 

flip the pole location, i.e. 𝒛 = 𝟏/𝜶, it will be in an allpass 

configuration with the zero at 𝒛 = 𝜶.  (If 𝜶 were complex, then 

we’d flip the radius and keep the phase as is.) 
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𝑮(𝒛) =
𝟏

𝟏 − 𝟎. 𝟗𝟗 𝜶 𝒛−𝟏
 

𝑮(𝒛) =
𝟏

𝟏 − (𝟏/𝜶) 𝒛−𝟏
 

 

Handout I Allpass Filters 

SPFirst Ch. 8 IIR Filters 



Problem 8.  Continuous-Time Frequency-Domain Analysis.  12 points. 

For each problem below, determine the frequency (or frequencies) present in x(t) and y(t) as well as the 

single sampling rate you would use for the entire system to prevent aliasing. 

Please note that 𝑇𝑐 =
1

𝑓𝑐
 and 𝑇0 =

1

𝑓0
 in the following.  Each part is worth 4 points. 

(a) Let 𝑥(𝑡) = cos(2𝜋𝑓𝑐𝑡) be a continuous-time signal for −∞ < 𝑡 < ∞. 

 

 

 

 

 

 

 

(c) Let 𝑥(𝑡) = cos(2𝜋𝑓𝑐𝑡) be a continuous-time signal for −∞ < 𝑡 < ∞. 

 

 

 

 

 

 

(d) Let 𝑥(𝑡) = sinc (
𝑡

𝑇0
) =

𝐬𝐢𝐧(𝝅
𝒕

𝑻𝟎
)

𝝅
𝒕

𝑻𝟎

 

be a continuous-time signal for −∞ < 𝑡 < ∞ 

whose continuous-time Fourier transform is 

𝑋(𝑓) = 𝑇0 rect (
𝑓

𝑓0
) 

Here, 𝑓𝑐 > 𝑓0 
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x(t) has frequencies -fc and +fc.  y(t) = x2(t) = ½ + ½ cos(2  (2 fc) t).  

Or one could determine y(t) = x(t) x(t) by using the Fourier transform 

𝒀(𝒋𝝎) =
𝟏

𝟐𝝅
𝑿(𝒋𝝎) ∗ 𝑿(𝒋𝝎)  where 𝑿(𝒋𝝎) = 𝝅 𝜹(𝝎+ 𝝎𝒄) + 𝝅 𝜹(𝝎− 𝝎𝒄) 

which gives 𝒀(𝒋𝝎) =
𝝅

𝟐
𝜹(𝝎 + 𝟐𝝎𝒄) + 𝝅 𝜹(𝝎) +

𝝅

𝟐
𝜹(𝝎 − 𝟐𝝎𝒄) and then 

computing the inverse Fourier transform to get y(t) = ½ + ½ cos(2  (2 fc) t). 

y(t) has frequencies –2fc, 0, and +2fc.  Here, fmax = 2fc.  

Sampling Theorem: fs > 2 fmax. 

Note: Because the component at 2fc in y(t) is a cosine, one could use fs ≥ 2 fmax. 

 

x(t) has frequencies -fc and +fc.  Cascade of two squaring blocks: 

𝒚(𝒕) = (𝒙𝟐(𝒕))𝟐 = (
𝟏

𝟐
+
𝟏

𝟐
𝐜𝐨𝐬(𝟐𝝅(𝟐𝒇𝒄)𝒕))

𝟐

 

𝒚(𝒕) =
𝟏

𝟒
+
𝟏

𝟐
𝐜𝐨𝐬(𝟐𝝅(𝟐𝒇𝒄)𝒕) +

𝟏

𝟒
𝐜𝐨𝐬𝟐(𝟐𝝅(𝟐𝒇𝒄)𝒕) 

𝒚(𝒕) =
𝟑

𝟖
+
𝟏

𝟐
𝐜𝐨𝐬(𝟐𝝅(𝟐𝒇𝒄)𝒕) +

𝟏

𝟖
𝐜𝐨𝐬(𝟐𝝅(𝟒𝒇𝒄)𝒕) 

Here, fmax = 4fc.  Choose fs > 2 fmax . 

 
Sinusoidal amplitude modulation: 

𝒚(𝒕) = 𝐬𝐢𝐧𝐜 (
𝒕

𝑻𝟎
) 𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕) = 𝒙(𝒕) 𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕) 

Modulation property for the Fourier transform: 

𝒀(𝒋𝝎) =
𝟏

𝟐
𝑿(𝒋(𝝎 +𝝎𝟎)) +

𝟏

𝟐
𝑿(𝒋(𝝎 −𝝎𝟎)) 

Frequency content of 𝑿(𝒋𝝎) shifts left & right by 𝝎𝟎. 

From the Fourier transform table on SPFirst p. 338, 

𝑿(𝒋𝝎) = 𝑻𝟎 𝐫𝐞𝐜𝐭 (
𝝎

𝝎𝟎
) 

 

First squarer gives –2fc, 0, and +2fc from part (a). 

Second squarer gives–4fc, –2fc, 0, +2fc, +4fc . 

 

𝒚(𝒕) has frequencies [−𝒇𝒄 −
𝟏

𝟐
𝒇𝟎 , −𝒇𝒄 +

𝟏

𝟐
𝒇𝟎 ] and [𝒇𝒄 −

𝟏

𝟐
𝒇𝟎 , 𝒇𝒄 +

𝟏

𝟐
𝒇𝟎 ]. 

Here, 𝒇𝒎𝒂𝒙 = 𝒇𝒄 +
𝟏

𝟐
𝒇𝟎 and choose 𝒇𝒔 > 𝟐 𝒇𝒎𝒂𝒙  to satisfy Sampling Theorem 
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